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Abstract- A mixed dominating set S ⊂ V ∪ E of a connected graph G(V,E) is mixed circuit
dominating set of G if the elements of S along with the ends of the edges in it constitute a circuit. A
mixed circuit dominating set S is a minimal mixed circuit dominating set if no proper subset of S is
a mixed circuit dominating set. The mixed circuit domination number γmc(G) of G is the minimum
cardinality of a mixed circuit dominating set. In this paper we include some basic results on mixed
circuit domination, bounds on γmc(G) and its exact values for some standard graphs.
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1 Introduction

A set S of vertices in a graph G(V,E)
is called a dominating set if every vertex v ∈
V \ S, is adjacent to an element of S. A dom-
inating set is minimal dominating set if no
proper subset S′of S is a dominating set. The
domination number γ(G) of a graph G is the
minimum cardinality of dominating sets in G.
A dominating set with minimum cardinality is
called a γ − set of G.
It is immediate that every superset of a dom-
inating set of graph G is again a dominating
set.
Let G(V,E) be a connected graph. Then S ⊂
V is called a connected dominating set if S is a
dominating set and the subgraph induced by S
of G is connected. The minimum cardinality of
connected dominating sets is called connected
domination number and is denoted by γc(G).
For a graph G(V,E) a subset S of V ∪ E
is a mixed dominating set if every element
x ∈ (V ∪ E) \ S is adjacent or incident to an

element of S. In mixed domination, a vertex
v dominates itself, all vertices adjacent to v
and all edges incident with v and an edge uv
dominates itself, both vertices u and v and all
edges incident with u or v. A mixed dominat-
ing set is a minimal mixed dominating set if
no proper subset of S is a mixed dominating
set. The mixed domination number γm(G) of
G is the minimum cardinality of a mixed dom-
inating set. A γm−set of a graph G is a mixed
dominating set with cardinality γm(G).
If S is a mixed dominating set and x ∈ S, by a
private neighbour of x (with respect to S) we
mean an element of V ∪E which is dominated
by x but not by any other member of S.

2 Mixed Circuit Domina-
tion

Throughout this paper, a graph repre-
sents a connected graph unless otherwise spec-
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ified and the darkened elements of V ∪ E of
graph G indicates the elements of a mixed cir-
cuit dominating set.

Definition 2.1. By a graph formed by a sub-
set A of V ∪E we mean a subgraph whose edge
set is A∩E and the vertex set consists the ver-
tices in A together with the ends of the edges
in A.

Definition 2.2. A mixed dominating set S ⊂
V ∪ E of a connected graph G(V,E) is mixed
circuit dominating set of G if the graph formed
by S is a circuit.

ie; S ⊆ V ∪ E is a mixed circuit dominating
set if

1. each element of V ∪E\S is either adjacent
or incident to an element of S and

2. the elements of S together with the ends
of the edges in S form a circuit.

Definition 2.3. A mixed circuit dominating
set S is said to be a minimal mixed circuit dom-
inating set if no proper subset of S is a mixed
circuit dominating set.

Definition 2.4. The mixed circuit domination
number γmc(G) of G is the minimum cardinal-
ity of a mixed circuit dominating set.

Definition 2.5. A γmc set of a graph G is a
mixed circuit dominating set with cardinality
γmc(G).

The mixed circuit domination prob-
lem of a graph G is the problem of finding γmc

set of G.

3 Basic Properties

A mixed circuit dominating set S of a
graph G is a subset of the vertex set V if and
only if |S| = γmc(G) = 1. In other words, if
γmc(G) > 1 then, any mixed circuit dominat-
ing set of G must contain an edge.

Figure 1: Two minimal mixed circuit dominat-
ing sets of a graph are indicated in figure by
darkened edges. The second one is a γmc−set.

Theorem 1. Let G be a graph. Suppose that
G 6= K1. A mixed circuit dominating set S is
minimal if and only if

1. every vertex in S has a private neighbor in
V and

2. every edge e in S has a private neighbor in
(V ∪E) \S or the graph formed by S \ {e}
is not a circuit.

Proof. The sufficient part is straight forward .
To prove the necessary part, consider a mini-
mal mixed circuit dominating set S of G. The
result is trivial if G is K1. So let n ≥ 2. If
a vertex v ∈ S has no private neighbor in V,
then any element in the neighbor set of v is
dominated by some other element in S. There-
fore |S| > 1 and since the elements of S form
a circuit, S must contain two edges adjacent to
v. So the set S\ {v} will form a mixed circuit
dominating set which contradicts the minimal-
ity of S.
Now suppose an edge e ∈ S has no private
neighbor in (V ∪ E) \ S and the graph formed
by S \ {e} is a circuit. Since e has no private
neighbor every member of (V

⋃
E)\S is domi-

nated by S\{e}. Also since S is a mixed circuit
dominating set e is dominated by some mem-
bers of S \ {e}. Thus S \ {e} forms a mixed
circuit dominating set of G, again a contradic-
tion.
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Theorem 2. For a graph G(V,E), γmc(G) = 1
if and only if G is a star.

Proof. Let G be the star K1,t, t ≥ 0. Then the
vertex v in G of degree t forms a γmc-set of G.
Hence γmc(G)=1.
Conversely assume that γmc(G) = 1. Let S be
a γmc-set. Since an edge cannot form a circuit,
S = {v}, where v ∈ V . This is true only if
v is adjacent to all other vertices in G and all
edges in G are incident with v, so that G is a
star.

Remark 3.1. A subset S of V ∪E of cardinality
2 cannot form a circuit. Therefore there exist
no graph G with γmc(G) = 2.

Theorem 3. For a graph G, γmc(G) = 3 if
and only if G is a triangle.

Proof. If G is a triangle the result is obvious.
Conversely suppose that γmc(G) = 3. Then
there exist a γmc−set S for G with |S| = 3.
Clearly S ⊂ E. No other subsets of V ∪ E
of cardinality 3 form a circuit. Since S is a
γmc−set of cardinality 3 and S ⊂ E, it forms
a triangle. Suppose G is not itself a triangle.
Then G contains a vertex other than the end
vertices of elements of S. Since S ⊂ E such a
vertex cannot be dominated by S, a contradic-
tion.Therefore G is a triangle.

Theorem 4. For a graph G(V,E), γmc(G) = 4
if and only if G is either C4 or G = (K1 +
(rK1 ∪K1,s)∪ pK1) +K1, where r,s and p are
non negative integers not simultaneously zero.

Proof. If G is C4 the result is obvious .
Let G = (K1+(rK1∪K1,s)∪pK1)+K1, where
r,s and p be non negative integers such that
r + s+ p ≥ 0. There is a vertex in G adjacent
to all other vertices in G for any r,s,p. The
triangle obtained by putting r = s = p = 0 is
a subgraph of G for all r,s and p. The edges of
this triangle together with the vertex of degree
|G|−1 form a mixed circuit dominating set for
G. Therefore γmc(G) ≤ 4. Since G is not a
star graph or a triangle by Theorems 2 and 3

Figure 2: G

γmc(G) ≥ 4. Therefore γmc(G) = 4.
Conversely suppose that γmc(G) = 4. Then
any γmc-set S must contain either four edges
or three edges and a vertex.
If S ⊂ E. Then S forms a C4 and dominates
the edges in this C4, its four vertices and all
edges incident with these vertices. Therefore
G is either C4, (K1 + (K1 ∪K1)) +K1 or K4

If S contains three edges and a vertex, then the
edges in S form a triangle and the vertex in S is
a vertex in this triangle. Let S={v,uv,vw,wu}.
So all vertices of G must be adjacent to v and
all edges must be incident to either u, v or w.
Thus G must be one of the graphs mentioned
in the statement.

Theorem 5. Let G(V,E) be a graph with |V | =
n. If γmc(G) < n then any γmc-set of G must
contain a vertex.

Proof. A circuit with k edges can dominate at
most k vertices. Therefore any γmc-set with
cardinality less than n must contain a vertex.

Corollary 6. If a graph G(V,E) has a γmc-set
S ⊂ E, then γmc(G) ≥ |V |

Definition 3.1. A mixed circuit dominating
set S is said to visit a vertex if it is an end
vertex of some edge in S.

3



Remark 3.2. 1. A vertex adjacent to a pen-
dant vertex should be in every γmc-set.

2. A vertex with degree two do not belong to
any γmc-set.

3. A mixed circuit dominating set visits all
cut vertices.

Theorem 7. Let G be a graph with n vertices
and m edges. Let S be a γmc-set for G with
|S| = n. Then S ⊂ E if and only if G contains
a spanning cycle.

Proof. An edge dominates only the end vertices
of that edge and those edges incident with it.
Let S ⊂ E be a γmc-set for G. Then every ver-
tex must be an end point of some element of S.
The minimal circuit which contains all vertices
of G and contains exactly n edges is a spanning
cycle of G. Thus elements of S form a spanning
cycle if S ⊂ E and |S| = n.
Conversely suppose that G has a spanning cy-
cle. Let S be edge set of this spanning cycle.
Then |S| = n. Clearly S forms a mixed cir-
cuit dominating set. Since γmc(G)=n, S is also
minimal.

Corollary 8. If a graph G(V,E) contains a
spanning cycle then γmc(G) ≤ |V |

Example 9. For the graph in figure 3,
γmc(G) < |V | though it contains a spanning
cycle

Figure 3: γmc(G) = 5 < |V |

Proposition 3.1. If a graph G has a cut edge
other than a pendant edge then G has no mixed
circuit dominating set.

Proof. Let e be a cut edge other than a pen-
dant edge. Then G \ {e} has two non trivial
component say G∗ and G∗∗. Since e is a cut
edge it belongs to no cycle. Therefore any cir-
cuit of G is either a circuit of of G∗ or a circuit
of G∗∗ and any circuit of G∗ dominates only
edges of G∗ and any circuit of G∗∗ dominates
only edges of G∗∗. Hence the result.

Remark 3.3. The converse of proposition 3.1
need not be true.The graph G in figure 4 has
neither a cut edge nor a mixed circuit domi-
nating set.

Figure 4: G

Theorem 10. If an r regular graph G with n
vertices has a mixed circuit dominating set then

γmc(G) ≥ d rn
2(r−1)e+ d

n−d rn
2(r−1)

e
r−2 e, where r ≥ 3

Proof. Let S be a γmc− set of G. Suppose S
contains k edges. Assume that S forms a cycle
with k edges. Then these k edges dominate all
edges and k vertices. Since G is a r regular
graph a cycle with k edges can dominate at
most (r-1)k edges and since S is aγmc − set
(r − 1)k ≥ r

2n. Therefore k ≥ rn
2(r−1) . ie;k ≥

d rn
2(r−1)e

And k edges can dominate at most k vertices.
A vertex in S can dominate at most r-2 vertices
not in that cycle. If k = d rn

2(r−1)e we need at

least d
n−d rn

2(r−1)
e

r−2 e to dominate the remaining
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n− d rn
2(r−1)e vertices.

Therefore |S| ≥ d rn
2(r−1)e+ d

n−d rn
2(r−1)

e
r−2 e.

Corollary 11. If a cubic graph G with n ver-
tices has a mixed circuit dominating set then
γmc(G) = n.

Proof. Let S be any γmc−set of G containing k
edges. Then these k edges dominate all edges
and k vertices of G. Since any circuit in a 3-
regular graph is a cycle (otherwise it should
contain a vertex of degree greater than or equal
to four), any vertex in S dominates exactly one
vertex not in S. Therefore S should contain n-k
vertices. ie;|S| = k + (n− k) = n.

4 Mixed Circuit Domina-
tion Number of Some
Standard Graphs

In this section we find the mixed circuit domi-
nation number for some standard graphs.

Theorem 12. The circuit domination number
of a complete graph Kn is n, where n 6= 2.

Proof. Let G(V,E) be a complete graph with
|V | = n. Since G is complete it contains a span-
ning cycle. Therefore γmc(G) ≤ n by Corollary
8.
Let S be any γmc − set. Suppose |S| < n.
Then S contain at least one vertex by Theo-
rem 5. That is S contains at most n-2 edges
and n-2 edges can dominate at most n-2 ver-
tices. Thus there exists two vertices say u and
v which are not dominated by the edge set of
S and these two vertices are not members of
the circuit formed by S. Since G is complete
there exists an edge between u and v and is
not dominated by S. Hence the result.

Theorem 13. For m,n ≥ 2 γmc(Km,n)

=

{
2m+ 1, if n > m;
2m, if n = m.

Proof. Let V = (V1, V2) be the parti-
tion of the vertex set of Km,n. Suppose
V1 = {u1, u2, ..., um} and V2 = {v1, v2, ..., vn}.
case(i) n > m ≥ 2
Then S = {u1, u1v1, v1u2, u2v2, ..., umvm, vmu1}
forms a mixed circuit dominating set. There-
fore γmc(Km,n) ≤ 2m + 1. To get the reverse
inequality, consider a mixed circuit dominating
set S of Km,n with |S| = k. If possible let
k≤ 2m. Then S contains at least one vertex.
That is S contains at most 2m-1 edges. Since
there is no odd cycle in Km,n S contains at
most 2m-2 edges. That is the edges in S
dominates at most 2m-2 vertices of V1 ∪ V 2.
Also since every edge in Km,n has one end in
V1 and the other end in V2, for each i=1,2
the edges in S can dominate at most m-1
vertices of Vi. Hence there exist two vertices
ui ∈ V1 and vj ∈ V2 which are not dominated
by the edges in S. Hence the edge uivj is not
dominated by S, a contradiction. Therefore
|S| ≥ 2m+ 1. Hence the result.
case(i)n = m ≥ 2
Then S = {u1v1, v1u2, u2v2, ..., umvm, vmu1}
forms a mixed circuit dominating set. There-
fore γmc(Km,m) ≤ 2m. To get the reverse
inequality, consider a mixed circuit dominating
set S of Km,m with |S| = k. If possible let
k≤ 2m− 1.Then S contain at least one vertex.
That is S contain at most 2m-2 edges. That
is the edges in S dominates at most 2m-2
vertices of V1 ∪ V 2. Also since every edge in
Km,m has one end in V1 and the other end in
V2, for each i=1,2 the edges in S can dominate
at most m-1 vertices of Vi. Hence there exist
two vertices ui ∈ V1 and vj ∈ V2 which are not
dominated by the edges in S. Hence the edge
uivj is not dominated by S, a contradiction.
Therefore |S| ≥ 2m. Hence the result.

The following lemma will help to determine
γmc of a Wheel graph.

Lemma 14. Let C be a circuit in the Wheel
graph Wn+1 = Cn +K1 [2] with |E(C)| ≤ n−1
then C omits three consecutive edges of Cn.

Proof. Let C be a circuit in Wn+1 = Cn + K1
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with number of edges less than or equal to n-1.
Then it must contain the central vertex [since
the circuit which does not contain central ver-
tex is Cn and has n edges ]
Therefore the circuit C contains at least two
edges incident with the central vertex. Let
number of edges common to C and Cn be k. If
possible suppose C does not omit three consec-
utive edges of Cn. Then there are n-k edges of
Cn which does not belong to the circuit. There-
fore the circuit contain at least n-k edges inci-
dent with central vertex. Therefore the total
number of edges of the circuit C is greater than
k+(n-k)=n, which is a contradiction. Hence
the result.

Theorem 15. γmc(Wn+1) = n+ 1

Proof. Consider Wn+1 = Cn +K1

Then the edges of Cn together with one ver-
tex constitute a mixed circuit dominating set
of Wn+1.
Therefore γmc(Wn+1) ≤ n+ 1
Now let S ⊂ V ∪ E be γmc set of cardinality
less than n+1. Then by Theorem 5 S contains
at least one vertex. Thus S contains at most
n-1 edges and these edges of S forms a circuit C
with |E(C)| < n− 1. Therefore by Lemma 14
C omits three consecutive edges of Cn. Thus
in this case S cannot dominate the edge in the
middle of these three consecutive edges of Cn

Therefore γmc(Wn+1) = n+ 1 .

Corollary 16. Mixed circuit domination num-
ber of Petersen graph (J(5,2,0)) [2] is 10 and
any γmc set contains at least one vertex.

Figure 5: J(5, 2, 0)

Proof. Since J(5, 2, 0) is a cubic graph
γmc(J(5, 2, 0)) = 10 by Corollary 11. Since
J(5,2,0) is a non hamiltonian [2] 3- regular
graph on 10 vertices and γmc(J(5, 2, 0)) = 10,
by Theorem 7 any γmc set contains at least one
vertex.

Corollary 17. Mixed circuit domination num-
ber of 3 Cube Q3 [2] is 8

Proof. Q3 is a cubic graph with 8 vertices and
it has a mixed circuit dominating set, by Corol-
lary γmc(G) = 8.

Figure 6: Q3

Corollary 18. Mixed circuit domination num-
ber of 3 Prism [2] is 6 and any γmc set contains
at least one vertex.

Proof. 3 prism is a cubic graph with 6 vertices
and it has a mixed circuit dominating set,by
Corollary 11 γmc(G) = 6. Since 3 prism is a
non hamiltonian 3- regular graph on 6 vertices
and γmc(G) = 6, by Theorem 7 any γmc set
contains at least one vertex.

Corollary 19. Mixed circuit domination num-
ber of Tutte’s 8 cage [1] is 30 .
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Figure 7: 3 prism

Proof. Tutte’s 8 cage is a cubic graph with 30
vertices and it has a mixed circuit dominating
set, by Corollary11 γmc(G) = 30

Figure 8: Tutte’s 8 cage

Corollary 20. Mixed circuit domination num-
ber of Coxecter graph [1] is 28 and any γmc set
contains at least one vertex.

Proof. Coxecter graph is a cubic graph with 28
vertices and it has a mixed circuit dominating
set. Therefore γmc(G) = 28 by Corollary 11.

Since it is a 3- regular graph on 8 vertices
which has no hamiltonian cycle and γmc(G) =

Figure 9: Coexecter

28, by Theorem 7 any γmc set contains at least
one vertex.

Corollary 21. Mixed circuit domination num-
ber of Heawood graph [2] is 14.

Proof. Heawood graph is a cubic graph with 14
vertices and it has a mixed circuit dominating
set. Therefore γmc(G) = 14

Figure 10: heawood graph

Remark 4.1. There are 3- regular graphs which
have no mixed circuit dominating set.
For example the graph G obtained by replacing
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each vertex of the Petersen graph by a triangle
has no mixed circuit dominating set.

Theorem 22. If G is the graph obtained by
replacing each vertex of the Petersen graph by
a triangle then G has no mixed circuit domi-
nating set.

Figure 11: Petersen graph with each vertex re-
placed by a triangle

Proof. Let G be the graph obtained by replac-
ing each vertex of the Petersen graph by a tri-
angle. Since G is a cubic graph the edges of
any mixed circuit dominating set form a cycle.
Since Petersen graph J(5, 2, 0) is not hamilto-
nian every cycle in J(5, 2, 0) omits at least one
vertex . Therefore every cycle in G omits all
the vertices of at least one triangle of G. So
any cycle of G cannot dominate the edges of
that triangle. Therefore G has no mixed cir-
cuit dominating set.

Another 3-regular graph having no mixed
circuit dominating set is given in figure 12

Now again we come back to the computation
of mixed circuit domination number of some
well known graphs. First consider the Andras-
fai graph.
For the additive group G = Z3k−1, k ≥ 1 and
C ⊂ Z3k−1 consisting of elements congruent to
1 modulo 3, the graph Andrasfai graph And(k)
is the cayley graph Cay(G,C)
For example And(4)=Cay(Z11,{1,4,7,10})

Figure 12: A 3- regular graphs with no mixed
circuit dominating set.

Theorem 23. γmc(andrasfaigraph And(4))=10

Figure 13: And(4)

Proof. From figure 13 it is clear that And(4)
has a mixed circuit dominating set of cardi-
nality 10. Therefore γmc(And(4)) ≤ 10
Since And(4) is a 4 regular graph
γmc(And(4)) ≥ d 4∗11

2∗(4−1)e + d 11−84−2 e = 8 + 2 =

10. by Theorem 10
Therefore γmc(And(4)) = 10

Theorem 24. The mixed circuit domination
number of (Q4) [2] is 14.

Proof. The graph Q4 in figure 14 is a 4 regular
graph of order 16. From the figure it is clear
that Q4 has a mixed circuit dominating set of
cardinality 14. Therefore γmc(Q4) ≤ 14.
By Theorem 10, γmc(Q4) ≥ d 4∗16

2∗(4−1)e +

d 16−114−2 e = 11 + 3 = 14
Therefore, γmc(Q4) = 14
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Figure 14: Q4
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